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Visualizing Bitonic Sorting on a Linear Array 

1: Sort half-arrays in 
opposite directions 

2: Compare half-arrays 

3: Send larger item in 
each pair to the right 

Perform 2 & 3 
recursively on each half 

Initial data sequence 
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Example Bitonic Sorting Network 

0000 
0001 
0010 
0011 
0100 
0101 

0110 
0111 
1000 
1001 
1010 
1011 

1100 
1101 
1110 
1111 

Stage 1 Stage 2 Stage 3 Stage 4 

Lanes (threads) Blue box = low-to-high sorter,  red box = high-to-low sorter 
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Example Run 
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8x monotonic lists:  (3) (7) (4) (8) (6) (2) (1) (5) 
4x bitonic lists: (3,7) (4,8) (6,2) (1,5) 
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Sort the bitonic lists 



G. Zachmann 43 Sorting Massively Parallel Algorithms 2 July 2014 SS 

1 

2 

3 

4 

5 

6 

7 

8 

3 

8 

7 

4 

5 

6 

1 

2 

4x monotonic lists:  (3,7) (8,4) (2,6) (5,1) 
2x bitonic lists: (3,7,8,4) (2,6,5,1) 
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Sort the bitonic lists 
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2x monotonic lists:  (3,4,7,8) (6,5,2,1) 
1x bitonic list: (3,4,7,8, 6,5,2,1) 
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Done! 
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Complexity of the Bitonic Sorter 

!  Depth complexity (= parallel time complexity): 

!  Bitonic merger:  

!  Bitonic sorter:  

!  Work complexity of bitonic merger: 

! Means number of comparators C(n) here 

!  Recursive equation for C: 

! Overall    

!  Remark: there must be some redundancy in the sorting network, 
because we know (from merge sort) that n comparisons are 
sufficient for merging two sorted sequences 

!  Reason for the redundancy?  
⟶ because the network is data-independent! 

O
�
log n

�

O
�
log

2 n
�

C (n) = 2C (n2) +
n
2 , with C (2) = 1

C (n) = 1
2n log n
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Remarks on Bitonic Sorting 

!  Probably most well-known parallel sorting algo / network 

!  Fastest algorithm for "small" arrays (or, is it?) 

!  Lower bound on depth complexity is 
 
 
assuming we have n processors 

O
�
n log n

�

n
= O

�
log n

�
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!  A nice property: comparators in a bitonic sorter network only 
ever compare lines whose label (= binary line number) differs by 
exactly one bit! 

!  Consequence for the implementation: 

! One kernel for all threads 

!  Each thread only needs to determine  
which bit of its own thread ID to "flip" 
⟶ gives the "other" line with which to compare 

!  Hence, bitonic sorting is sometimes pictured as well suited for a 
log(n)-dimensional hypercube parallel architecture: 

!  Each node of the hypercube = one processor 

!  Each processor is connected directly to log(n) many other processors 

!  In each step, each processor talks to one of its direct neighbors 
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Adaptive Bitonic Sorting 

!  Theorem 2: 
Let a be a bitonic sequence. 
Then, we can always find an index q such that 

max

�
aq, . . . , aq+ n

2�1

�
 min

�
aq+ n

2
, . . . , aq�1

�

Gabriel Zachmann
Optional
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!  Sketch of proof: 

!  Assume (for sake of simplicity) that all elements 
in a are distinct 

!  Imagine the bitonic sequence as a "line" on a 
cylinder 

!  Since a is bitonic ⟶ only two inflection points 
⟶ each horizontal plane cuts the sequence at 
exactly 2 points, and both sub-sequences are 
contiguous 

!  Use the median m as "cut plane" ⟶ 
each sub-sequence has length n/2, and 
max("lower sequ.") ≤ m ≤ min("upper sequ.") 

!  These must be  La and Ua , resp. 

!  The index of m is exactly index q in Theorem 2 

Gabriel Zachmann
Optional
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!  Visualization  
of the theorem: 

 

!  Theorem 3: 
Any bitonic sequence a can be partitioned into four sub-
sequences  (a1, a2, a3, a4 ) = a,  such that 
 
 

and 

0 n-1 q q+n/2 

m

|a1|+ |a2| = |a3|+ |a4| = n

2
, |a1| = |a3| , |a2| = |a4|

either (La,Ua) = (a1, a4, a3, a2) or (La,Ua) = (a3, a2, a1, a4)

Gabriel Zachmann
Optional
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Visual "Proof" 

0 n-1 n/2 0 n-1 q q+n/2 

m

a4 a3 a2 a1 

0 n-1 q q+n/2 

m

a4 a3 a2 a1 

0 n-1 

m

La Ua 

1. Input Sequence 2. Find q and partition 

3. Swap parts 4. Result 

Gabriel Zachmann
Optional
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Complexity 

!  Finding the median in a bitonic sequence ⟶ log n  steps 

!  Remark: this algorithm is no longer data-independent! 

!  Depth complexity: ⟶ exercise 

!  Work complexity of adaptive bitonic merger: 

!  Number of comparisons 

 

!  This is optimal! 

!  Need a trick to avoid actually copying the subsequences  

-  Otherwise the total complexity of a BM(n) would be O(n log n) 

!  Trick = bitonic tree (see orig. paper for details) 

C (n) = 2C (
n

2

) + log(n) =
k�1X

i=0

2

i
log(

n

2

i
) = 2n � log n � 2

Gabriel Zachmann
Optional
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How to find the median in a bitonic sequence 

!  We have 
 
or 
 
(depending on the definition of the median) 

!  Finding the minimum in a bitonic sequence takes log(n) steps 

median(a) = min(Ua)

median(a) = max(La)

Gabriel Zachmann
Optional
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Topics for Master Theses 

!  Lots of different parallel sorting algorithms 

!  Our implementation of Adaptive Bitonic Sorting is ancient (on an 
ancient architecture [shaders …] ) 

!  Do you love algorithms? 

!  Thinking about them? 

!  Proving properties? 

!  Implementing them super-fast? 

!  Then we should talk about a possible master's thesis topic!  ! 

Gabriel Zachmann
Optional
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Application: BVH Construction 

!  Bounding volume hierarchies (BVHs): very important data 
structure for accelerating geometric queries 

!  Applications: ray-scene intersection, collision detection, spatial 
data bases, etc.  

!  Database people call it often "R-tree" ... 
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BVHs in Collision Detection 

E F G D 

C B 
A 

F5 G4 G5 F4 
F7 G6 G7 F6 

D7 E6 E7 D6 
E4 D4 D5 E5 

A1 
B2 B3 C2 C3 

5 6 7 4 

3 2 
1 

Object 1 Object 2 
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Parallel Construction of BVHs 

!  First idea: linearize 3D points/objects by space-filling curve 

!  Definition curve: 
A curve (with endpoints) is a continuous function with domain in 
the unit interval [0, 1] and range in some d-dimensional space. 

!  Definition space-filling curve: 
A space-filling curve is a curve with a range that covers the entire 
2-dimensional unit square (or, more generally, an n-dimensional 
hypercube). 
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Examples of Space-Filling Curves 

Peano curve 

Hilbert curve 

Z-order curve 
(a.k.a. Morton curve) 

Z-order curve in 3D 
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!  Benefit: a space-filling curve gives a mapping from the unit 
square to the unit interval 

!  At least, the limit curve does that … 

! We can construct a "space-filling" curve only on some specific 
(recursion) level, i.e., in practice space-filling curves are never really 
space-filling 

Example: Z-order for point data

Space-filling curve: mapping from unit square to unit interval
Z-order: map quadrants recursively in order NW, NE, SW, SE
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Example: Z-order for point data

Space-filling curve: mapping from unit square to unit interval
Z-order: map quadrants recursively in order NW, NE, SW, SE
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